Learning and data clustering with an RBF-based spiking neuron network
نویسندگان
چکیده
Learning and data clustering with an RBF-based spiking neuron network Natacha Gueorguieva a , Iren Valova b & Georgi Georgiev c a Computer Science , CSI/City University of New York , 2800 Victory Boulevard, Staten Island, NY 10314, USA b Computer Science , University of Massachusetts Dartmouth , 285 Old Westport Road, N. Dartmouth, MA 02747, USA c Computer Science , University of Wisconsin Oshkosh , 800 Algoma Boulevard, Oshkosh, WI 54901, USA Published online: 20 Feb 2007.
منابع مشابه
Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks
We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on real-world data, and we demonstrate how temporal synchrony in a multilayer network can induce hi...
متن کاملSpiking Neurons by Sparse Temporal Coding and Multilayer Rbf Networks
We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on real-world data, and we demonstrate how temporal synchrony in a multi-layer network can induce h...
متن کاملUnsupervised Classification of Complex Clusters in Networks of Spiking Neurons
For unsupervised clustering in a network of spiking neurons we develop a temporal encoding of continuously valued data to obtain arbitrary clustering capacity and precision with an efficient use of neurons. Input variables are encoded independently in a population code by neurons with 1-dimensional graded and overlapping sensitivity profiles. Using a temporal Hebbian learning rule, the network ...
متن کاملUnsupervised learning of synaptic delays based on learning automata in an RBF-like network of spiking neurons for data clustering
In this paper, a new delay shift approach for learning in an RBF-like neural network structure of spiking neurons is introduced. The synaptic connections between the input and the RBF neurons are single delayed connections and the delays are adapted during an unsupervised learning process. Each synaptic connection in this network is modeled by a learning automaton. The action of the automaton a...
متن کاملNeural Nets SELF-LEARNING FUZZY SPIKING NEURAL NETWORK AS A NONLINEAR PULSE-POSITION THRESHOLD DETECTION DYNAMIC SYSTEM BASED ON SECOND-ORDER CRITICALLY DAMPED RESPONSE UNITS
Abstract: Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be ea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Exp. Theor. Artif. Intell.
دوره 18 شماره
صفحات -
تاریخ انتشار 2006